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Abstract 

The scope of this work is to determine the effect of ion implantation on the 

minority carrier lifetimes of upgraded metallurgical grade (UMG) silicon solar cells.  

Two species of atoms, arsenic and antimony, are used to getter impurities on P doped 

UMG wafers.  The lifetimes of these wafers are measured before and after the implant 

process and after various annealing sequences using photoconductivity measurements 

provided by a Sinton WCT-120.  Devices are then fabricated on these wafers so that 

lifetime trends measured by photoconductivity can be verified by reverse recovery time 

transient and quantum efficiency techniques.  Ultimately, minority carrier lifetime 

measurements allow determination of the combination of implant species and annealing 

techniques that best increase the minority carrier lifetimes of the UMG wafers.  Both 

arsenic and antimony implants proved capable of increasing minority carrier lifetime by a 

factor of ten. 
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Chapter 1: Motivation 

Solar photovoltaic electricity generation is a necessary technology needed to 

alleviate rising ratios of energy demand to generation and to combat the production of 

greenhouse gasses and other pollutants produced by hydrocarbon burning technologies.  

While solar cells provide an excellent solution to the world’s current energy crisis, they 

have one fatal drawback: a low short-term profit to power production ratio.  Improvement 

of this fundamental electrical energy generation method is being sought through several 

methods.  The first, and most obvious, of these approaches is to increase the physical 

efficiency of the solar collecting devices themselves.  Many times however, this is done 

at the expense of producing photovoltaic devices at greatly increased costs.  Perhaps the 

most essential technique of increasing the profit to power ratio, is to decrease the 

fabrication and maintenance costs of the photovoltaic generator. 

 

The primary material for creating photovoltaic generators is multicrystalline 

silicon which is produced from the scrap wafers of the electronic devices industry.  Such 

materials have purities of 99.999999% (eight nines) to 99.9999999% (nine nines).  Great 

expense is required to attain the high purities necessary to have a minimal number of 

electron and hole traps within the material.  Due to the value-added nature of the products 

produced by the electronics industry, the cost of high purity raw materials is an 

afterthought.  Unfortunately for the photovoltaic energy industry, which requires 

manufacturing solar cells by the square kilometer, material cost is of the utmost concern.   
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There are two ways to address this problem; the first is to create solar cells which 

use little or no silicon.  This is done using thin-film or organic technologies.  The 

problems with these two technologies are shorter lifespan and lower efficiencies of 

devices compared to crystalline silicon.  The other solution is to use a lower grade of 

silicon.  Silicon is generally made from quartzite and is one of the most abundant 

materials within Earth’s crust [1].  Costs associated with the high purity silicon required 

for the semiconductor industry are primarily attributed to the energy intensive 

purification process.  If a lower quality of silicon was used, then the cost of silicon 

substrates could be greatly reduced. 

 

 A solar cell operates on by the following two processes: absorption of photons 

from incident light and collection of photo-induced charge carriers.  First, light enters the 

cell where it is absorbed by the semiconductor lattice.  Electron-hole pairs are created by 

the absorbed photons.  Finally, the electron and hole need to flow to their respective 

contact points.  Minority carrier diffusion length is a metric that describes how far the 

electron or hole can travel in a semiconductor material before it is trapped by a defect in 

the material.  Minority carrier diffusion length is intimately related to the minority carrier 

lifetime.  Increases in carrier lifetime increase the diffusion length in a given material. 

 

For a solar cell, the purity of the silicon is not as important as the diffusion length 

of the charge carriers within the material.  As long as the diffusion length and the photo-

absorbance of the material are not terribly reduced, a high silicon purity level is not 
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extremely critical.  Upgraded metallurgical grade (UMG) silicon has similar properties to 

crystalline silicon, but its cost and purity are much lower. 

 

One possible technique to improve the minority carrier lifetime and, as a result, 

the diffusion length of UMG is to engineer defects within the material.  These defects, if 

properly manipulated, will act as impurity magnets which will adsorb the impurities thus 

providing trap-free paths for excitons.  This trapping of impurities is called gettering.  

Lattice stress created by defect engineering will also improve carrier collection by 

improving mobility which is also intimately related to diffusion length.  Ion implantation 

is a convenient method for creating layers with both gettering dopants and defects.  Using 

ion implantation, both dopant and lattice defects can be accurately placed [2,3,4,5,6,7,8]. 

 

According to Siedel et. al. [2], implant species that cause more lattice damage 

should be able to provided better gettering.  The difficulty is that the appropriate 

annealing technique has to be used to provide the appropriate amount of repair to lattice 

damage and to drive impurities to the gettering sites.  The goal is to electrically de-

activate any impurity that lies within the low grade silicon substrate near the location of 

the active pn junction.  Phosphorous diffusion has been shown to provide excellent 

gettering of impurities with modest annealing temperatures (~1000 °C).  Arsenic implant 

is comparable to phosphorous for high annealing temperatures [2].  Antimony is a larger 

atom than arsenic, so intuitively it could cause more lattice damage and therefore be an 

effective gettering species at even higher annealing temperatures. 
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Chapter 2: Methodology 

Ion Implantation 

Ten 4 inch, P-type, UMG wafers of various types are sliced into quarters using a 

wafer dicing saw from MTI.  The wafers are designated C2 through F3 by the 

manufacturer.  Cuts are aligned normal to the wafer flat thus allowing two of the four 

wafer slices to be marked by the flat (See Figure 2.1).  Wafer slices with the flat 

contained in their edges are set aside for ion implantation while the other two wafer slices 

are used for baseline reference and phosphorous diffusion. 

 

Figure 2.1 Wafer saw pattern 

 

Ten wafer slices containing the flat in their edges are cleaned with boiling acetone 

followed by an RCA standard clean to remove all traces of the mounting wax used to saw 

the wafers.  After such cleaning, the wafer slices are labeled with permanent marker and 

placed in two inch plastic jewel cases for shipping.   

 

Core Systems Inc is contracted to perform both arsenic and antimony 

implantations.  Both implantations are performed as separate orders, shipped several days 
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apart to minimize any possibility of mix-up.  Table 2.1 shows the implant parameters for 

both arsenic and antimony. 

 

Table 2.1 

 Arsenic Antimony 

Desired junction depth 500 nm  500 nm 

Desired background 

concentration 

10
19

cm
-3

 10
19

cm
-3

 

Maximum implant energy 200 keV 190 keV 

Implant dose 10
15

cm
-2

 10
15

cm
-2

 

 

Implant energy and dose are selected from the following charts in Figure 2.2. 

 

Figure 2.2 Plots of range and straggle versus energy [9]. 

 

Junction depth is used to determine range and hence implant energy.  For this 

work the maximum implant energy for each dopant species is used to achieve sufficient 

depth.  Once implant energies are determined, dose can be computed from Equation 2.1 
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PR

Q
N

π
=)0(        (2.1) 

 

Where N(0) is the surface concentration, Q is the implant dose, and RP is the straggle at 

particular implant energy for a particular species of atom [10].  The implant angle for 

both arsenic and antimony wafer slices is set to 0 degrees.  Core Systems calculates the 

necessary beam currents for their equipment based on the customer specified dose and 

implant energy.   

 

Photoconductance Lifetime Measurements 

Once the wafer slices reserved for implant are shipped, the remaining bare wafers 

are divided into two groups; one group is used for baseline measurement while the other 

group is used for conventional phosphorous diffusions.  Initial lifetime measurements are 

made on the unprocessed wafers after the machining wax was removed with boiling 

acetone.  A Sinton Consulting WCT 120 is used to make all preliminary minority carrier 

lifetime measurements.  This apparatus operates on the principle of a time of flight 

experiment. 

 

The apparatus consist of three primary components: a xenon flash lamp mounted 

on a stand, a sample platen containing a radio frequency (RF) assembly, and computer 

containing a National Instruments data acquisition card.  The system is controlled 

through Microsoft Excel.  The setup is shown in Figure 2.3. 
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Figure 2.3 Block diagram of the Sinton apparatus 

 

The fundamental operating principle of the machine is based on electromagnetic 

induction.  A coil is mounted below the sample (wafer slice) as shown in Figure 2.3.  The 

magnetic field created by the coil bathes the wafer slice.  This magnetic field, which 

varies sinusoidally with time, creates a time varying electric field in the wafer slice.  This 

electric field creates a current density which is proportional to resistivity as given by 

Ohm’s law.  The induced current density in the sample creates a magnetic field in the 

opposite direction as the coil field (Lenz’s Law).  This magnetic field acts on the coil, 

reducing its voltage drop.  Reduction in coil voltage is linearly proportional to the 

conductivity of the wafer material.  An equivalent circuit is show below in Figure 2.4. 
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Figure 2.4 Equivalent circuit of RF conductance measurement 

 

This RF sensing technique allows contactless photoconductance measurements of 

substrates.  The xenon flash bulb provides the light pulse needed to create photo-induced 

carriers.  A reference solar cell synchronizes the conductivity measurement with the light 

pulse (refer to Figure 2.3).  Finally, the decay rate of the light pulse (reference solar cell 

voltage) is compare to that of the RF coil voltage to determine the carrier lifetime. 

 

Hence this system is essentially the same as a typical laser based time of flight 

apparatus.  One flaw that the WCT 120 possesses is the slow decay rate of the flash lamp.  

The flash lamp of the system is a basic photography flash lamp which is intended to 

illuminate objects for several milliseconds while an exposure is being taken for a 

photograph.  Ideally, in a laser based time of flight measurement system, the duration of 

the light pulse will be at least two orders of magnitude less that the shortest minority 

carrier lifetime that is desired to be measured.  Since the light pulse of the WCT 120 is on 
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the same order of magnitude of the minority carrier lifetime, the lifetime is determined by 

the rate of decay of the photoconductivity compared with the rate of decay of the flash 

lamp. 

 

All calculations are performed in an Excel spreadsheet supplied with the system.  

The basic software package allows for the calculation of minority carrier lifetime as a 

function of apparent carrier concentration the Auger corrected inverse carrier lifetime 

versus carrier concentration, and the apparent open circuit voltage.  A calibration (zeroing 

of RF coil) is performed for each measurement.  Optimum settings are obtained with the 

auto scaling feature of the software.  Lifetime data is saved in its own spreadsheet. 

 

Device Fabrication 

Several solar cell devices were made by conventional phosphorous diffusion 

methods.  A Thermco Brute furnace was restored and commissioned for the task.  All 

boats were cleaned with a solution of hydrofluoric acid combined with nitric acid and de-

ionized water (1:1:1).  Caps and push rods were cleaned with a solution of hydrogen 

peroxide and sulfuric acid (1:1).  Tubes are purged with dry nitrogen gas. 

 

Fabrication of the diffused phosphorous solar cells begins with protecting both 

sides of the wafer slices with 200 nm of oxide.  Wafer slices are first processed with the 

RCA standard clean (See Appendix I) to remove surface impurities; then oxide is grown 

via pyrolytic wet oxidation (See Appendix II).  Slices are then stripped of the oxide on 

the front surface with buffered oxide etch (See Appendix II).  Oxide is stripped by 
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floating the slices on the surface of the etchant, thus eliminating the need to protect the 

back oxide with photoresist or wax.   

 

Again wafer slices are processed through the RCA standard clean.  Then the slices 

are placed adjacent to phosphorous source wafers.  The phosphorous tube is ramped to its 

processing temperature and the phosphorous boat is then pushed to the center zone.  

Nominally the tube is ramped with the boat already in the center zone, but in the case of 

phosphorous, deposition occurs as soon as the wafers reach deposition temperature.  

Boron deposition and oxidation are controlled by the chemistry of the ambient gasses.  

Ambient used for all phosphorous depositions is dry nitrogen. 

 

After soaking for the requisite time, the phosphorous boat is pulled out before the 

furnace tube is ramped down.  The wafer slices are deglazed with buffered oxide etch.  

Completion of the deglazing step is determined by when the phosphorous exposed 

surface becomes hydrophobic.  Another standard clean step is performed and the slices 

are oxidized and the phosphorous dopant is driven in.  A background concentration of 

approximately 10
19

cm
-3

 and a junction depth of 500 nm are the desired doping 

parameters. 

 

With the N-type phosphorous dopant in place, the minority carrier lifetime of 

each phosphorous doped wafer slice is again measured with the Sinton WCT-120.  Then 

the backside of each slice is stripped in the identical manner as the front side was 

previously.  After appropriate cleaning the slices are placed adjacent to boron nitride 
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source wafers and pushed into the boron tube.  The tube is then ramped to deposition 

temperature and the recovery process is started.  Recovery ambient consists of 1 SLPM 

of oxygen and 1 SLPM of nitrogen.  After a 20 minute recovery, the boron is sourced by 

adding to the ambient mixture 200 SCCM of hydrogen.  This gas is allowed to flow for 2 

min before an ambient of 2 SLPM nitrogen is restored.  During this period, boron soaks 

into the slices. 

 

Following a predetermined soak period, the boron tube is ramped down to loading 

temperature and the boat is pulled out.  Slices are deglazed for 2 minutes with buffered 

oxide etch to remove boron surface glass.  Samples are then oxidized at 800 °C for 2 

hours in an ambient of 500 SCCM oxygen to remove surface nitride.  Once oxidation is 

complete, slices are again etched with buffered oxide etch for two minutes.  Boron doped 

surfaces are hydrophobic once this process is complete. 

 

Once the boron is diffused, aluminum contacts are applied to the front and back 

surfaces of the wafer slice.  First, slices are dipped in buffered oxide etch to remove any 

remaining oxides.  Slices are then immediately placed under vacuum in a Temescal 

1800D electron beam evaporator.  The evaporator is allowed to reach a pressure of 10
-6

 

Torr.  Once at pressure, 500 nm of aluminum are deposited at a rate of 4 angstroms per 

second.  This procedure is repeated for the other side of the wafer slice. 

 

With contact metal placed, AZ5214E photoresist is applied to both sides of the 

wafer slice.  The backside is coated first with about 2 µm of resist and then baked for 30 
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minutes at 80 °C.  The front side is then spun with 2 µm of photoresist and also baked 

with the same parameters as the backside.  A Karl Suss 3 inch mask aligner is used to 

apply the contact pattern as shown in Figure 2.5. 

 

 

Figure 2.5 Contact pattern 

 

Since the pattern is from a shadow mask, the exposure must is reversed.  The 

reversal procedure used is to first expose with light; 360 mJ at 320 nm and 140 mJ at 365 

nm.  Next, the slices are baked for 2 minutes at 120 °C to cross link the exposed areas.  

Finally another light exposure is performed with the following optical parameters: 810 

mJ at 320 nm and 180 mJ at 365 nm.  Photoresist is now developed with MIF 300 

developer (See Appendix II).  Development typical takes 1 minute to complete.  Slices 

are then baked at 120 °C for 1 hour to harden the photoresist. 

 

Next, the slices are etched with a solution of phosphoric acid, acetic acid, nitric 

acid, and water (16:1:1:2) to remove unnecessary aluminum.  Etching requires 

approximately four minutes for each slice.  After etching, photoresist is removed by 

soaking slices in acetone for 60 minutes, rinsing in methanol for 1 minute and then de-

ionized water for 3 minutes. 
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To form solid ohmic contacts, the slices are sintered for 1 hour at 400 °C.  This 

operation is performed in a spare tube in the Thermco furnace.  Wafer slices are only 

cleaned in acetone and methanol as the RCA standard clean will compromise the metal 

contacts. 

 

The final step to create a solar cell device is defining the emitter region.  This is 

accomplished by masking a 1.25 by 1.25 cm area over each front contact using 3M vinyl 

electrical tape.  Back contacts are also protected by electrical tape.  Slices are then 

immersed for five minutes in a solution of hydrochloric acid and water (3:1) to remove 

any excess aluminum not covered by the tape.  Next, the slices are rinsed with DI water 

and then immersed into a solution of hydrofluoric acid and nitric acid (1:10) for 1 minute 

to etch off approximately 5 microns of silicon from the surface, thus eliminating the 

entire exposed n-layer. 

 

Device Characterization 

Sample diode current- voltage (I-V) characteristics of each solar cell device are 

then measured with a HP 4156 parameter analyzer to determine the presence of excessive 

shunt resistance.  If the shunt resistance is significantly greater than the series resistance, 

then the current- voltage (I-V) characteristics of each sample are measured under light 

from a GE ELH bulb.  Light intensity is calibrated to 1 sun at the location of the solar cell 

device.  This particular lamp is used for its close approximation to the spectrum of natural 

sunlight.  Device bias voltage is provided by a Kepco bipolar operational power supply / 
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amplifier.  Bias voltage level is measured with a Keithly 177 multimeter.  Current is 

measured with a different Keithly 177.  Figure 2.6 schematically depicts the functional 

construction of the measurement apparatus. 

 

 

Figure 2.6 I-V measurement apparatus 

 

Data from the I-V measurement are plotted in Excel.  Figure 2.7 shows the typical shape 

for such a plot. 

 

 

Figure 2.7 I-V curve 
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Series resistance, fill factor, and shunt resistance are readily ascertained from this plot.  

Fill factor is calculated by dividing the maximum power by the product of short circuit 

current and open circuit voltage.  Shunt resistance is determined from the reciprocal of 

the slope of the portion of the I-V curve located in quadrant two of the plot.  Series 

resistance is determined from the reciprocal of the I-V curve located in quadrant four. 

 

After obtaining the I-V characteristics of each measurable device (sample), the 

lifetime is measured by a reverse recovery transient technique (RRT).  The experimental 

setup is demonstrated schematically in Figure 2.8. 

 

Figure 2.8 Experimental setup for RRT 

 

The physical operating principle behind this measurement is that when a forward biased 

diode is thrown into reverse bias, current will still flow until the entire minority carrier 

population each electronic region of the diode recombines.  This results in the waveform 

of Figure 2.9. 
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Figure 2.9 Typical RRT waveform 

 

The flat portion of the curve seen just as the device goes into reverse bias is 

referred to as the storage time.  Storage time is related to minority carrier lifetime by 

Equation 2.2 

 









+=

R

F

PS
I

I
tt 1ln         (2.2) 

 

where tS is the storage time, tP is minority carrier lifetime, IF is forward current, and IR is 

reverse current.  Several values of storage time are measured for several different ratios 

of forward to reverse current.  Data are plotted in Excel and the minority carrier lifetime 

is extracted from the slope of storage time versus the natural logarithm of the ratio of 

forward to reverse current plus one [11].  
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Quantum efficiency of each device was measured with the apparatus 

schematically depicted in Figure 2.10. 

  

 

Figure 2.10 Quantum efficiency apparatus 

 

The operation of this system is as follows.  A chopped beam of light impinges on the 

device and creates an AC current signal.  This signal is detected and converted to a 

voltage signal by a pre-amplifier, which feeds a Stanford Research Systems lock-in 

amplifier which passes the RMS value of the AC signal to a computer.  The wavelength 

of the light is varied with a monochrometer from 400 to 1100 nm and the AC signal level 

is recorded as a function of the wavelength.  A DC bias light is supplied to the sample 

with an ELH lamp.  This bias light is used to stabilize the quasi Fermi levels during the 

measurement.  The measured AC signal is compared to that of a crystalline silicon 

reference cell and normalized to 0.9. 
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The purpose of the quantum efficiency measurement is to observe the spectral 

response of the solar cell.  Quantum efficiency is also a vital parameter for determining 

the diffusion length.  Diffusion length can be found using Equation 3.3 

 

( )
)()(1

)()(
)(1)(

λλα

λλα
λλ

P

P

L

L
RQE

+
−=       (2.3) 

 

where QE is normalized quantum efficiency, R is reflectance of the silicon, α is the 

absorption coefficient of crystalline silicon, and LP is the minority carrier diffusion 

length.  This equation is only valid for in cases where αWD <<1.  The term WD is the 

depletion width and is found from Equation 2.4.  This relation is only valid for lopsided 

junctions (ND >> NA) where ND is the number of donor states and NA is the number of 

acceptor states like those used for this work. 

 

A

AB
D

qN

VV
W

)(2 −
=

ε
        (2.4) 

 

where ε is the electric permittivity, VB is the built in potential and VA is the applied 

voltage.  Using a maximum possible built in voltage of 1.2 V and the measured 

background doping of 3x10
16

cm
-3

 the depletion width is not going to exceed 220 nm, 

which is much less than the lowest diffusion length of 20 µm.  At the wavelengths used to 

measure diffusion length the largest value of absorption coefficient is 300; hence, the 

product of absorption coefficient and depletion width are 0.001 which is much less than 

1. 
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Data for the absorption coefficient was obtained from a previous measurement on 

crystalline silicon.  Similar data can also be obtained from on-line tables and calculator 

applications.  Absorption coefficient is strongly dependant on optical wavelength, so 

values for each wavelength are needed. 

 

Reflection versus wavelength is measured using an Ocean Optics HR4000.  

Quantum efficiency is divided by the transmittance (1-R) and plotted in the following 

manner: the quantity 1/QE versus 1/α.  The reciprocal of the slope of this curve is equal 

to the minority carrier diffusion length provided the previously stated condition is met.  

Equation 2.5 relates the minority carrier diffusion length to the minority carrier lifetime. 

 

q

TkD

P

P ⋅
=

µ
         (2.5) 

 

Where DP is the diffusion coefficient for holes, µP is the hole mobility, k is the Boltzman 

constant, T is the temperature, and q is the fundamental charge.  For room temperature 

measurements and a hole mobility of 300 cm
2
/Vs, DP is 10 cm

2
/s.  

 

Devices made with arsenic and antimony ion implanted wafer slices are measured 

and prepared in a similar manner as those made using phosphorous.  The primary 

differences are that the implanted ions served as the N-layer rather than phosphorous and 

the devices had only aluminum for the back contact as opposed to the P+ layer created 
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during the boron doping stage.  Aluminum can be used in place of boron as a P-type 

dopant provided that the annealing temperature is high enough (T > 550 °C) [12]. 
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Chapter 3: Data 

Device Data 

Throughout the remainder of this work, wafer slices are designated as follows, the 

first capital and small letter indicate the dopant species (P, As, Sb) and the next letter and 

numeral indicate the parent wafer (C2, C3, D2, D3, D4, E3, E4, E5, F2, F3) (See Table 

3.1).  Typically, in the literature, the implanted region of the solar cell is removed after 

the impurity gettering anneal step.  After the implanted region is removed, the n+p 

junction is formed with conventional phosphorous diffusion.  Solar cells made for this 

work however have their junctions directly formed from the gettering implant.  Sixteen 

devices were made and six of these devices had fill factors greater than 58.  Resulting 

device properties are shown below and substrate characterization is described later in this 

section.   

 

The best devices are made by phosphorous diffusion and antimony implant.  The 

I-V characteristics of PD4 and SBE5 are shown in Figure 3.1 

 

Figure 3.1 I-V characteristics of PD4 (phosphorous) and SBE5 (antimony) 
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Fill factors are 65 for both devices.  Open circuit voltage of 511 mV for SBE5 and 484 

mV for PD4 are on par with what is predicted by the literature.  Short circuit current 

densities of 20 mA /cm2 found from quantum efficiency (QE) measurements are also 

reasonable [3].  Figure 3.2 shows relative QE measurements for representative examples 

of all three types of substrates. Note that the QE curves of higher lifetime devices are 

shifted to the right. 

 

Figure 3.2 QE measurements  

  

While the above devices work well as solar cells, the purpose of constructing 

devices is to measure the diffusion length and the effective minority carrier lifetime that 

result from the ion implant.  Minority carrier lifetimes of the bare wafer slices are 

measured by photoconductance, but improvement in device performance needs to be 

measured and verified by proven techniques.  The first of these techniques is QE as 

described in the methodology chapter.  Diffusion lengths for three sets of devices are 

shown if Figure 3.3.  (QE data for remaining devices is found in Appendix V) 
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Figure 3.3 Diffusion length vs. temperature 

 

These devices are selected as matched sets to show the effect of annealing temperature on 

different implant species.  The diffusion length for D3 shows arsenic implantation giving 

a greater diffusion length than antimony.  This is true for an annealing temperature of 

1000 °C.  Devices from wafer E4 show diffusion lengths measured in slices annealed at 

1200 °C.  Note that antimony and arsenic slices exchange roles; arsenic now has a shorter 

diffusion length.  These sets are representation of temperature extremes used in the 

annealing experiments.  Finally, wafer E5 has a temperature profile that is between 

wafers E4 and D3.  The temperature is ramped from 600 to 1200 °C; as soon as 1200 °C 

is reached, the tube is cooled.  Note that the diffusion lengths are nearly the same with the 

antimony diffusion length being slightly longer than that of arsenic.  Plots of 1/QE vs. 1/α 

for wafers D3, E4, and E5 are shown in Figure 3.4.  Diffusion length is determined from 

these plots by the reciprocal of the slope of the curves. 
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Figure 3.4 Diffusion length data 

 

 Carrier lifetimes are observed by RRT as discussed in the methodology section 

(Figure 3.5).  Carrier lifetimes are plotted versus annealing temperature for the all of the 

devices listed above.  The same trends are observed as with the diffusion length 

measurements.  Arsenic devices demonstrate performance superior to antimony devices 

for lower annealing temperatures and the roles of the two species are reversed at higher 

annealing temperatures (See Appendix IV for sample RRT data).    
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Figure 3.5 Carrier lifetimes versus temperature by RRT 

 

Wafer Slice Data 

The results of both implanted species show promise in improving minority carrier 

lifetime from the initial lifetime of the unprocessed wafer slice.  Figure 3.6 shows peak 

minority carrier lifetime versus minority carrier concentration for all unprocessed wafers.  

This is as measured by the Sinton WCT-120.  Carrier lifetime reported without injection 

level is not useful as carrier lifetime has been seen to be dependant on injection level (See 

Appendix III).  Therefore all Sinton measurements in this work will either directly report 

the carrier level or combine it with the lifetime. 
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Figure 3.6 Peak minority carrier lifetime versus minority carrier injection level 

 

These data provide a baseline for comparison of the various implantation techniques.  

From this plot, it is readily apparent that the F series wafers have a much greater minority 

carrier lifetime that any of the other three series (about three times). 

 

Minority carrier lifetimes for samples D3 through F3 are shown in Figure 3.7 for 

baseline and both arsenic and antimony implants.  Table 3.1 is provided so that device 

designations can be matched to annealing temperatures.  Both the arsenic sample and 

antimony sample for each wafer type are annealed together for a variety of temperature 

profiles.  The purpose of keeping these samples together is to eliminate the effects of 

possible furnace tube contamination and variations in cleaning solutions on lifetime.  

While each set of samples E3 through F3 were processed at the same time, samples D3 

and D4 had each implant species annealed separately.  
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Figure 3.7 Peak minority carrier lifetime versus minority carrier injection level for 

samples D3 through F3 

 

Table 3.1 

Device 
Designation 

Dopant 
Species 

Anneal Temperature 
(°C) 

Time 
(hr) 

PD3 Phosphorous 1050 5 

ASD3 Arsenic 1000 1 

SBD3 Antimony 1000 1 

PD4 Phosphorous 1050 5 

ASD4 Arsenic 1100 1 

SBD4 Antimony 1100 1 

PE3 Phosphorous 1000 1 

ASE3 Arsenic 1000 1 

SBE3 Antimony 1000 1 

ASE4 Arsenic 1200 1 

SBE4 Antimony 1200 1 

ASE5 Arsenic 1200 0.08333 

SBE5 Antimony 1200 0.08333 

ASF2 Arsenic 1200 1 

SBF2 Antimony 1200 1 

ASF3 Arsenic 1250 1 

SBF3 Antimony 1250 1 
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Figure 3.8 shows the temperature profiles used for the annealing experiments.  

Generally, 1000 °C is considered safe for crystalline silicon, so the first experiment is to 

vary the temperature from 600 °C to 1000 °C over the course of an hour.  More 

aggressive profiles are also used, one of which brings the temperature to 1250 °C which 

is the maximum operating temperature of the furnace tube.  Figure 3.9 shows minority 

carrier lifetime versus annealing temperature as measured by the Sinton WCT-120.  The 

carrier lifetime is reported as carrier lifetime multiplied by injection level.  

 

 

Figure 3.8 Temperature versus time profiles 
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Figure 3.9 Minority carrier lifetime versus temperature by Sinton WCT-120  

(Red points represent antimony, blue represent arsenic.) 

 

Initial results suggest both arsenic and antimony species are capable of 

improvement in carrier lifetime.  Arsenic benefits primarily from an annealing profile 

where temperature is held near 1000 °C for an hour or more.  Temperatures greater than 

1000 °C appear to improve minority carrier lifetime in arsenic.  Antimony implanted 

samples benefit from temperature profiles where the maximum temperature meets or 

exceeds 1200 °C.  Annealing profiles with temperatures less than 1200 °C do little to 

improve carrier lifetime as seen in antimony samples SbD3 and SbD4. 

 

Devices C2 and C3 are used to test metallizing techniques once the mesa etch 

technique proved to be successful.  Aluminum is deposited on C2 and C3 and is patterned 

with chemical etch.  The I-V characteristics of both devices are measured under one sun 

light intensity.  Figure 3.10 shows the results of these measurements. 
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Figure 3.10 I-V Characteristics of samples C2 and C3 before sintering 

 

Sample C3 is placed in a sintering tube at 400 °C.  The sample is destroyed due to 

a power electronics failure that caused the tube to overheat.  Sample C2 is placed in a 

spare tube at 400 °C for a period of 1 hour.  I-V characteristics are re-measured and the 

results plotted in Figure 3.11. 

 

Figure 3.11 I-V characteristics of sample C2 before and after annealing 
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The fill factor of sample C2 is clearly improved by the annealing.  However this 

improvement is mitigated by a significant decrease in shunt resistance.  Shunt resistance 

is later shown to be a problem for several devices. 
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Chapter 4: Analysis 

 

Material Comparison 

As seen in the last section, lifetime and diffusion length data from the devices 

show that the ion implantation of arsenic and antimony were less successful than 

phosphorous diffusion for gettering impurities.  Antimony implants outperform arsenic 

implants for higher anneal temperatures, but not at lower temperatures.  The best overall 

solar cell devices were made with phosphorous and antimony. 

Looking purely at the data from the Sinton apparatus, it is apparent that both 

phosphorous diffusion and ion implantation getter impurities after appropriate annealing 

steps are completed.  Conventional wisdom proclaims that it is necessary to anneal 

substrates after ion implantation in order to repair crystal lattice damage.  After a review 

of the literature, it is not clear that repairing all of the lattice damage is desired.  In fact 

Siedel et. al. [2] found a strong correlation between lattice damage caused by defects and 

the gettering capability of the implant species. 

 

The assumption that some amount of lattice damage allows impurities to be 

trapped explains why the performance of arsenic implantation as a getter degraded with 

increasing anneal temperature.  Since there is no overlap between optimal annealing 

temperatures for arsenic and antimony, it is hard to be sure which causes more lattice 

damage using the data collected for this work.  It is likely that the antimony causes the 

most damage as temperatures high enough to cause lifetime degradation in antimony 

implanted samples were never reached in this series of experiments. 
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If the implant atoms were treated as macroscale objects, then it is logical that the 

antimony should cause the most lattice damage as antimony has greater mass than 

arsenic.  Momentum is always conserved and is given by Equation 4.1. 
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1 mvmvmvmv +=+        (4.1) 

 

where the primes indicate initial quantities, m indicates mass, and v is velocity.  Assume 

that m1’ and v1’ are the mass and initial velocity of the implanted atom and m2’ and v2’ 

are the initial mass and velocity of the crystal lattice.  Let kinetic energy be described by 

2

2

1
mvKE = .  If this expression is solved for velocity and substituted into Equation 4.1 

the result is momentum dependant on the mass of the implant species as shown in 

Equation 4.2. 
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From this analysis, it is no surprise to see that antimony implanted substrates could 

withstand higher anneal temperature and produce good lifetimes as the silicon lattice 

must suffer a larger change in momentum with an implant species of higher mass.  This 

assumes that KE is constant. 
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Despite not having good agreement between the lifetimes measured by the Sinton 

WCT-120 and the other two carrier lifetime measurement techniques, the trends shown 

by both techniques are similar.  That is, the lifetimes of arsenic implants are better than 

those of antimony implants at low temperatures and the roles are reversed at higher 

temperatures.  As mentioned earlier, the Sinton apparatus was not used after the contact 

metallization due to the low signal to noise ratio that would result from the metal surface 

having such a high conductance compared to the silicon.   

 

To explain discrepancies between the Sinton apparatus and the device 

measurement techniques, consideration must be given to what each technique is actually 

measuring.  The Sinton apparatus is designed and engineered to measure the effective 

carrier lifetime of wafers, not devices, at an industrial scale.  Eddy currents created by the 

time varying magnetic field of the RF coil will primarily flow parallel to the pn junction 

as shown in Figure 4.1.   

 

 

Figure 4.1 Eddy currents from Sinton apparatus 

 

 RRT and QE measurement measure the current that flows through the junction 

and are only concerned with the current that flows through the junction and metallurgical 
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contacts.  Consider also that the area of the finished devices does not encompass the 

whole wafer slice, but only a 1.56cm
2
 portion of the wafer slice.  Since the majority of 

the silicon surface is removed during the device defining etch, it is quite probable that 

many lifetime damaging defects were also removed.  In any case, the Sinton apparatus 

appears to work well for what it is designed to do. 

 

Device Comparison 

 Measurements of the devices made in this work are compared to a heterojunction 

intrinsic thin layer (HIT) solar cell made on a UMG wafer slice.  The slice used was an E 

series wafer so the diffusion length and RRT data of this device is compared to devices 

made on the E4 wafer as this wafer is the closest match to that used for the HIT cell.  In 

principle, a HIT cell overcomes wafer impurities by engineering strong electric fields 

near the active junction to give enough energy to excitons to allow them to jump out of 

traps without recombination.  Figure 4.2 gives the generic device structure and energy 

band diagram for a HIT solar cell. 

 

 

Figure 4.2 HIT solar cell 
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What is important with this comparison is that no gettering technique was 

performed on the slice used for the substrate of this device.  The N+ and I layers were 

grown using chemical vapor deposition techniques.  The P+ layer on the bottom is 

diffused with boron at a high concentration (10
19

 cm
-3

).  Contact is made to the top with 

indium tin oxide (ITO) and contact is made to the bottom with aluminum [14]. 

Quantum efficiency, reflection, and RRT measurements for this device are shown 

Figure 4.3, 4.4, and 4.5 respectively.   

 

Figure 4.3 Quantum efficiency (Internal and external) 

 

 

Figure 4.4 Reflection 
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Figure 4.5 RRT current vs. time plots 

 

Diffusion length and minority carrier lifetime are calculated from these 

measurements in the same manner as the ion implanted devices.  The results of these 

measurements are given in Table 4.1.   

 

Table 4.1 

 HIT cell E series wafer Antimony implant E series 

wafer 

RRT 500 ns 1500 ns 

Diffusion Length 19 µm 37.5 µm 

Fill Factor 44 58 

 

It is blatantly obvious by comparison of both carrier lifetime and diffusion length 

measurements that ion implantation and annealing result in significant improvement.  
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Lifetime and diffusion length measurements are in good agreement with each other for 

both devices.  Reflection for the HIT device is significantly smaller (30% vs. 45%) than 

the ion implanted device due to the ITO contact.  The ITO alloy, apart from being a 

transparent conductor, reduces reflection by matching the index of refraction of air to that 

of silicon.  Considering the advantages of the ITO contact on the HIT cell, the 

improvement in substrate quality by ion implantation is further emphasized (Fill factor of 

only 44 for HIT cell vs. 58 for antimony implant). 

 

Device Problems 

As mention in Chapter 3, many substrates display unacceptably low shunt 

resistance (< 500 Ω).  What is also interesting is that most of the shorted devices occurred 

for substrates where the annealing temperature was kept low.  This is true for 4 of the 6 

implanted C series and D2 wafers.  Phosphorous diffusion caused little problems, and all 

failed phosphorous devices can be attributed to the metallization technique used to define 

their contacts.   

 

Low shunt resistances for the remaining failed devices can be attributed to the 

shadowing effect caused by the grain boundaries on the surface of the wafer.  Ion 

implantation is done at oblique incidence and as is demonstrated schematically in Figure 

4.6; shadowing will cause regions of no doping along surfaces parallel to the ion beam.  

Regions parallel to the beam include the side walls of defects at the grain boundary 

edges. 
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Figure 4.6 Shadowing diagram 

 

Aluminum evaporation is reasonably isotropic and contacts the top surface of the wafer 

slice as shown in Figure 4.7.  After this aluminum is annealed, it makes electrical contact 

to all surfaces of the silicon and forms a shunt between the N-region and the P-region.   

 

Figure 4.7 Aluminum contact coating 

 

Figure 4.8 shows the average shunt resistance as a function of temperature.  

Interestingly, as annealing temperature was increased, shunt resistance also increased.  

This phenomenon can be easily explained; the higher temperature caused the dopants to 
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spread out.  Voids left by the oblique ion beam are covered by this diffusion.  The 

diffusion coefficients of arsenic and antimony are ten times less than that of phosphorous, 

thus it was expected for phosphorous to diffuse laterally across the surface more than 

antimony or arsenic for a given temperature [6]. 

 

A definitive test to determine if the angle of the implant is the problem would be 

to have the implantation repeated at a tilt of some non-zero angle.  While the sample is 

tilted relative to the incidence of the beam, the carousel that holds the wafer slice should 

also be rotated to guarantee uniform coating of all surface defects.  If the shunt resistance 

of all devices improves then, the cause will be proven correct.  Otherwise further 

investigation is needed. 

 

 

Figure 4.8 Shunt Resistance versus anneal temperature (Arsenic is shown with blue, 

antimony is shown with red.) 
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Wafer Slice Improvement 

As is shown in Figure 4.9, the ion implantation techniques performed for this 

work have improved the effective minority carrier lifetime of the wafer slices by as much 

as a factor of ten.  The plot of Figure 4.9 shows the product of minority carrier lifetime 

and injection level after processing versus the product of minority carrier lifetime and 

injection level before processing.  Determination of the quantitative improvement is 

accomplished by dividing the y value by the x value for any particular data point. 

 

 

Figure 4.9 Processed minority carrier lifetime * injection level vs. unprocessed minority 

carrier lifetime * injection level (Arsenic is displayed in blue, antimony is displayed in 

red.)
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Chapter 5: Conclusion 

Ion implantation of both arsenic and antimony both demonstrate the ability to 

getter impurities from UMG wafers provided the proper annealing technique is used.  

Even without removal of the gettering layer UMG solar cells with diffusion lengths of at 

least 20 µm have been produced.  When compared with a HIT device made on a similar 

wafer, a diffusion length improves from 20 to 37.5 µm.  Antimony needs more heat than 

arsenic to realize improvement in substrate lifetimes.  Substrates annealed at higher 

temperatures produce the best devices.  The next step is to remove the gettering layer and 

perform fresh phosphorous diffusions to see if diffusion lengths can be improved further.  

Future experiments need to be done where ion implant angle is varied such as to assure 

good coverage.  For further research, the implant energy should be increased to see if 

gettering improves.  
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Appendix I: RCA Standard Clean 

 

 The RCA standard clean was developed by the Radio Corporation of America for 

cleaning the surface of a silicon wafer before any high temperature (T > 400 °C) 

processing.  The purpose of this procedure is to remove all traces of organic and metallic 

material.  Especially any materials that could introduce any deep-level trap states in the 

silicon.  The process is detailed as follows. 

 

I. Prepare the following three solutions 

a. 5:1 DI (18 MΩcm)  H2O:NH4OH 

i. Heat to 80 °C 

ii. Add 1 part H2O2 

b. 6:1 DI H2O:HCl 

i. Heat to 80 °C 

ii. Add 1 part H2O2 

c. 50:1 DI H2O:HF 

II. When solutions have recovered to 80 °C immerse silicon into the base 

solution (NH4OH) for 15 min 

III. Rinse for 5 min in DI water 

IV. Immerse in HF solution for 15 seconds 

V. Rinse for 1 min in DI water 

VI. Immerse in acid solution (HCl) for 15 minutes 

VII. Rinse for 3 min in DI water 

VIII. Dry with dry N2 gas. 
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Appendix II: Relevant Chemistry 

 

Pyrolytic Wet Oxidation 

Pyrolytic wet oxidation consists of burning hydrogen in the presence of oxygen to form 

steam.  For this work a mixture of 6 SLPM of hydrogen and 4 SLPM of oxygen is heated 

to 800 °C.  Combustion is spontaneous and is maintained throughout the oxide growth 

step. 

 

MIF 300 Developer 

MIF 300 Developer is a commercially available dilute mixture of tetramethyl ammonium 

hydroxide and is used as a developer for acid based photoresist compounds.  MIF 300 is 

an appropriate developer for AZ5214E photoresist. 

 

Buffered Oxide Etch 

Buffered oxide etch is a solution of hydrofluoric acid buffered with ammonium fluoride.  

It is used to aggressively etch silicon dioxide. 
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Appendix III: Sinton Control Panel 

 

Figure A2.1 Sinton control panel 
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Appendix IV: RRT Raw Data 

 

Devices are intentionally biased in such a manner as to have the reverse current be 

a positive value.  This is done to allow oscilloscope curves with ambiguous inflection 

points to be plotted with the time axis changed to logarithmic scale.  Since the decay after 

the storage time is exponential, it will show up on the log plot as a line with a slope equal 

to the decay constant of the curve.  The inflection point is seen at the beginning of this 

line.  An example is given below in Figure A4.1. 

 

 

Figure A4.1 Sample RRT curve and inflection extraction technique (SBE4 2
nd

 curve) 

 

 

Figure A4.2 PD4 
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Figure A4.3 ASE5 

 

 

Figure A4.4 SBE4 

 

 

Figure A4.5 SBE5 
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Figure A4.6 ASE4 

 

Figure A4.7 PD3 
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Appendix V: Optical Data 

 

 

 

Figure A5.1 Reflection vs. wavelength for device wafers 
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Figure A5.2 Internal QE for devices PD4, ASE4, and SBE4 

 

 

Figure A5.3 Internal QE for devices PD3, ASD3, and SBD3 
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Figure A5.4 Internal QE for devices ASE5 and SBE5 
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